

FD-762

M.A./M.Sc. 4th Semester Examination, May-June 2022

MATHEMATICS

Paper - I

Functional Analysis-II

	Time	:	Three	Hours]	[Maximum	Marks	:	80
--	------	---	-------	--------	----------	-------	---	----

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- (a) If B and B' are Banach spaces and if T is a continuous linear transformation of B onto B', then prove that the image of each open space centred on the origin in B contains an open sphere centred on the origin in B'.
 - (b) State and prove uniform boundedness theorem.

29_DRG_(4)

(Turn Over)

(c) Show that a closed linear map T mapping a Banach space X into a Banach space Y is continuous.

Unit-II

- **2.** (*a*) State and prove Hahn-Banach theorem for real linear space.
 - (b) Let X and Y are Banach spaces and $T \in B(X, Y)$. Then prove that R(T) is closed if and only if $R(T^*)$ is closed.
 - (c) Let X be a normed spaces. Then show that X is reflexive if and only if every bounded sequence in X has a weak convergent subsequence.

Unit-III

- 3. (a) If X is an inner product space, then show that $\sqrt{\langle x, x \rangle}$ has the properties of a norm.
 - (b) Prove that every orthogonal set in a Hilbert space is contained in some complete orthogonal set. Further every non-zero Hilbert space contains a complete orthogonal set.
 - (c) If M and N are closed linear subspace of a Hilbert space H such that $M \perp N$, then prove that linear subspace M + N is closed.

29_DRG_(4)

(Continued)

Unit-IV

4. (a) Let y be a fixed vector in a Hilbert space H and let f_y be a scalar value function on H defined by

$$f_{y}(x) = \langle x, y \rangle \forall x \in H$$

then show that f_y is a functional in H^* i.e. f_y is a continuous linear functional on H and $||y|| = ||f_y||$.

- (b) State and prove Projection theorem.
- (c) Show that the adjoint operation is one-to-one onto as a mapping of B(H)into itself and $||T^*T|| = ||T||^2$.

Unit-V

- 5. (a) Let T be a normal operator on a Hilbert space H and p be a polynomial with complex coefficients, then show that the operator p(T) is normal.
 - (b) If $P_1, P_2, ..., P_n$ are the projections on closed linear subspaces $M_1, M_2, ..., M_n$ of a Hilbert space H, then show that $P = P_1 + P_2 + ... + P_n$ is a projection if and only if P_i s are paire wise orthogonal (in the sense that $P_i P_j = 0$ whenever $i \neq j$). Also then P is the projection on $M = M_1 + M_2 + M_3 + ..., M_n$.

(c) Show that if T is a positive operator on a Hilbert space H, then I + T is non-singular.