Roll No.	
----------	--

DD-462

M. A./M. Sc. (Second Semester) . EXAMINATION, May/June, 2020

MATHEMATICS

Paper Fourth

(Advanced Complex Analysis—II)

Time: Three Hours

Maximum Marks : 80

Note: Attempt *two* parts from each Unit. All questions carry equal marks.

Unit-I

1. (a) If $|z| \le 1$ and $p \ge 0$, then show that:

$$\left|1 - \mathbf{E}_{p}(z)\right| \le \left|z\right|^{p+1}$$

(b) Let $S = \{z \in C : a \le Re z \le A\}$, where 0 < a < A $< \infty$. Then show that for every $\in > 0$ there is a number K such that for all z in S:

$$\left| \int_{\alpha}^{\beta} e^{-t} t^{z-1} dt \right| < \in$$

whenever $\beta > \alpha > k$.

(c) Let r be a rectifiable curve and let K be a compact set such that $K \cap \{r\} = \emptyset$. Let f be a continuous

function on $\{r\}$ and let $\epsilon > 0$ be given. Then show that there is a rational function R(z) having all its poles on $\{r\}$ and such that :

$$\left| \int_{r} \frac{f(w)}{w - z} dw - R(z) \right| < \in$$

for all z in K.

Unit-II

- 2. (a) Let $r:[0,1] \to \mathbb{C}$ be a path and let $\{(f_t, D_t): 0 \le t \le 1\}$ be an analytic continuation along r. For $0 \le t \le 1$ let R(t) be the radius for convergence of the power series expansion of f_t about z = r(t). Then show that either $R(t) \equiv \infty$ or $R:[0,1] \to (0,\infty)$ is continuous.
 - (b) Show that the function $f_1(z) = 1 + 2 + 2^2 + 2^3 + \dots$ can be obtained outside the circle of convergence of the power series.
 - (c) Define Analytic Continuation. If the radius of convergence of the power series:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

is non-zero finite, then show that f(z) has at least one singularity on the circle of convergence.

Unit-III

- 3. (a) Define Poisson kernel. Show that the Poisson kernel $P_r(\theta)$ satisfies the following properties:
 - (i) $\frac{1}{2\pi} \int_{-\infty}^{\infty} P_r(\theta) d\theta = 1$
 - (ii) $P_r(\theta) > 0$ for all θ , $P_r(-\theta) = P_r(\theta)$ and P_r is periodic in θ with period 2π .

- (b) Let G be a region and $f: \partial_{\infty}G \to \mathbb{R}$ a continuous function. Then show that $u(z) = \operatorname{Sup} \{\phi(z): \phi \in P(f,G)\}$ defines a harmonic function u in G.
 - (c) To state and prove Harnack's theorem for harmonic functions.

Unit-IV

4. (a) If f(z) is analytic within and on the circle r such that |z| = R and if f(z) has zeros at the points, $a_i \neq 0$, (i = 1, 2,, m) and poles at $b_j \neq 0$, (j = 1, 2,, n) inside r, multiple zeros and poles-being repeated, then show that:

$$\frac{1}{2\pi} \int_0^{2\pi} \log \left| f(\operatorname{Re}^{i\theta} \right| d\theta = \log \left| f(0) \right| + \sum_{i=1}^m \log \left| f(0) \right| d\theta$$

$$\frac{R}{\left|a_i\right|} - \sum_{j=1}^n \log \frac{R}{\left|b_j\right|}$$

- (b) Define order of an Entire Function. Find the order of polynomial $P(z) = a_0 + a_1 z + + a_n z^n, a_n \neq 0$.
- (c) Use Hadamard's factorization theorem to show that:

$$\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

Unit-V

5. (a) Define Bloch's constant. Let f be an analytic function in a region containing the closure of the disc $D = \{z : |z| < 1\}$ and f(0) = 0, f'(0) = 1. Then show that f(D) contains a disc of radius L.

(b) For each α and β , $0 < \alpha < \infty$ and $0 \le \beta \le 1$, there is a constant $C(\alpha, \beta)$ such that if f is an analytic function defined in some simply connected region containing $\overline{B}(0,1)$ that omits the values 0 and 1 and such that $|f(0)| \le \alpha$; then show that:

$$|f(z)| < C(\alpha, \beta)$$
 for $|z| \le \beta$.

- (c) Let $f \in y$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then show that:
 - (i) $\left|a_2\right| \le 2$
 - (ii) $f(U) \supset D\left(0; \frac{1}{4}\right)$

DD-462 embye towarb verification (CI) tind work

(a) Define bloch's constant. Let 4 be in Analytic

650

(A-72)