Assignment-2

1. Solve
$$x(1-x^2)dy + (2x^2y - y - ax^3) dx = 0$$
.

2. Solve
$$y \ln y \, dx + (x - \ln y) \, dy = 0$$
.

3. Solve the initial value problem
$$\frac{dy}{dx} = \frac{2}{x}y + x$$
, $y(1) = 2$.

4. Solve
$$\frac{dy}{dx} + \frac{y}{x} \ln y = \frac{y}{x^2} (\ln y)^2.$$

5. Solve
$$x^3 \frac{dy}{dx} - x^2 y + y^4 \cos x = 0$$
.

- 6. Define the Wronskian $w(y_1; y_2)$ of any two differentiable functions y_1 and y_2 defined in an interval $(a, b) \subset \mathbb{R}$. Show that $w(y_1; y_2) = 0$ if y_1 and y_2 are linearly dependent.
- 7. Find the general solution of the second order equation (x-1)y'' xy' + y = 0, knowing that a polynomial is a solution.
- 8. Find the general solution of the second order equation xy'' (2x+1)y' + (x+1)y = 0, knowing that an exponential function is a solution.
- 9. Find the general solution of y'' 3y' + 2y = 0.
- 10. Find the solution of the initial value problem y'' 2y' + 3y = 0, y(0) = 1, y'(0) = 4.